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We present a statistical model to estimate the accuracy
of peptide assignments to tandem mass (MS/MS) spectra
made by database search applications such as SEQUEST.
Employing the expectation maximization algorithm, the
analysis learns to distinguish correct from incorrect
database search results, computing probabilities that
peptide assignments to spectra are correct based upon
database search scores and the number of tryptic termini
of peptides. Using SEQUEST search results for spectra
generated from a sample of known protein components,
we demonstrate that the computed probabilities are
accurate and have high power to discriminate between
correctly and incorrectly assigned peptides. This analysis
makes it possible to filter large volumes of MS/MS
database search results with predictable false identifica-
tion error rates and can serve as a common standard by
which the results of different research groups are com-
pared.

A major goal of proteomics research is to catalog and quantify
the proteins and protein complexes present in cells grown under
a variety of conditions.1,2 Tandem mass spectrometry (MS/MS)
has been particularly useful for determining the protein compo-
nents of complex mixtures.3-6 Proteins in a sample are first
digested into smaller peptides, usually by the enzyme trypsin, and
subjected to reverse-phase chromatography. Peptides are then
ionized and fragmented to produce signature MS/MS spectra that
are used for identification. Most frequently, peptide identifications
are made by searching MS/MS spectra against a sequence
database to find the best matching database peptide.7 From these
peptide assignments to spectra, the original proteins present in
the sample are inferred. Posttranslational modifications to peptides

can be investigated by searching spectra against a database while
allowing for specific peptide modifications.8-10 Labeling methods,
such as differential isotopic labeling of cysteines with the ICAT
reagent, can be combined with MS/MS database search to
quantify the levels of proteins in one sample relative to those in
a reference.11-13 In addition, peptides corresponding to MS/MS
spectra can be derived without a database search by de novo
sequencing.13-15 This is particularly useful for samples from
organisms with polymorphic mutations or unsequenced genomes.
De novo sequencing can also be combined with a database
search.14,16-17

Over the past few years, MS/MS with database search has
been used increasingly for high-throughput analysis of complex
protein samples. This has been made possible by automated
database search software such as SEQUEST,18 Mascot,19 and
Sonar.20 These applications compare each spectrum against those
expected for all possible peptides obtained from a sequence
database that have masses within an error tolerance of the
precursor ion mass. Each spectrum is then assigned the database
peptide with the highest overall score, or set of scores, that reflects
various aspects of the fit between spectrum and peptide. These
scores help discriminate between correct and incorrect peptide
assignments to spectra and, hence, facilitate detection of false
identifications. They are often based on counts of common
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fragment ion masses between the observed spectrum and that
predicted for the peptide but can reflect additional information,
such as the difference in mass between spectrum parent ion and
peptide. The SCOPE algorithm uses a probabilistic scoring
scheme that can incroporate a priori knowledge regarding an
experiment.21

A current challenge for high-throughput proteomics is to use
database search results from large numbers of MS/MS spectra
in order to derive a list of identified peptides and their corre-
sponding proteins. This task necessarily entails distinguishing
correct peptide assignments from false identifications among
database search results. In the case of small datasets, this can be
achieved by researchers with expertise manually verifying the
peptide assignments to spectra made by database search pro-
grams. However, such a time-consuming approach is not feasible
for high-throughput analysis of large datasets containing tens of
thousands of spectra or when expertise is not available. Alterna-
tively, researchers can attempt to separate the correct from
incorrect peptide assignments by applying filtering criteria based
upon database search scores and properties of the assigned
peptides, such as the number of tryptic termini.3-4,22 However,
the numbers of rejected correct identifications and accepted false
identifications that result from applying such filters are not known,
nor how those numbers are affected by mass spectrometer, sample
preparation, or spectrum quality. In addition, researchers often
use different filtering criteria, making it particularly difficult to
compare their results to one another.

In this work, we describe in detail a robust and accurate
statistical model to assess the validity of peptide identifications
made by MS/MS and database search. Each peptide assignment
to a spectrum is evaluated with respect to all other assignments
in the dataset, including necessarily some incorrect assignments.
Employing database search scores and the number of tryptic
termini of the assigned peptides, the method applies machine
learning techniques to distinguish correctly from incorrectly
assigned peptides in the dataset, and in so doing, computes for
each peptide assignment to a spectrum a probability of being
correct. We apply this method to SEQUEST database search
results for ESI-MS/MS spectra generated from a control sample
of 18 purified proteins.23 Using this dataset with peptide assign-
ments of known validity, we demonstrate that the computed
probabilities are accurate and have high power to discriminate
between correctly and incorrectly assigned peptides.

This statistical analysis promises to be of great value to high-
throughput proteomics. Accurate probabilities with high discrimi-
nating power obviate the need for laborious manual verification
of MS/MS database search results in the case of all but the most
uncertain peptide identifications and enable filtering of data with
predictable false identification error rates. This should facilitate
the benchmarking of various mass spectrometer settings and
experimental procedures to identify those that maximize the
number of identifications per sample or per unit time. It can also
serve as a common standard by which the results of different
research groups, using different mass spectrometers, and even

different database search software, can be compared. It is
interesting to note that similar advantages have been realized in
the field of large-scale DNA sequencing with the development of
mathematical models for the estimation of errors in “raw” DNA
sequence data.24-26

EXPERIMENTAL DATASETS
Tandem mass spectra used in this study were generated from

22 LC/MS/MS runs on a control sample composed of 18 purified
proteins at a variety of concentrations, as previously described.23

For each LC/MS/MS run, a control sample proteolyzed with
trypsin was subjected to ESI-MS/MS. A training dataset of peptide
assignments with known validity was obtained by searching these
spectra with the SEQUEST analysis program18 using a Drosophila
peptide database27 appended with sequences of the 18 control
proteins. The database also included sequences of several human
proteins, such as keratin, that are common sample contaminants.
Since the low-resolution ESI ion trap mass spectrometer used to
generate the MS/MS spectra cannot distinguish between [M +
2H]2+ and [M + 3H]3+ precursor ions, each spectrum was
searched by SEQUEST against the database and assigned a
peptide separately for each precursor ion charge. This analysis
produced a training dataset with 18 496 peptide assignments to
spectra of [M + 2H]2+ ions and 18 044 peptide assignments to
spectra of [M + 3H]3+ ions. The 504 spectra of [M + H]+ ions
were omitted from the analysis. SEQUEST peptide assignments
corresponding to the 18 control sample proteins or common
contaminants could occur by chance and, hence, were manually
scrutinized to determine whether they were correct. All peptide
assignments corresponding to proteins other than the 18 in the
control samples and the common contaminants were inferred to
be incorrect. In total, 1687 peptide assignments to spectra of [M
+ 2H]2+ ions and 1011 to spectra of [M + 3H]3+ ions were
determined to be correct.

A distinct test dataset of peptide assignments to spectra was
obtained by searching the same spectra from above with SE-
QUEST using a human peptide database27 appended with se-
quences of the 18 proteins of the control sample. This database
is 2.5 times larger than that used for the training data, and it is
expected to generate different SEQUEST score distributions and
perhaps different correct and incorrect peptide assignments. Once
again, all correct peptide assignments corresponding to one of
the 18 control sample proteins or common contaminants were
manually confirmed. Altogether, 1658 peptide assignments to
spectra of [M + 2H]2+ ions and 1001 to spectra of [M + 3H]3+

ions were determined to be correct.

RESULTS AND DISCUSSION
Discriminant Function Analysis to Combine Database

Search Scores. A useful statistical model to assess the validity
of peptide assignments should enable discrimination between
correct and incorrect peptide assignments on the basis of readily
available information regarding the spectrum and assigned pep-
tide. All database searching tools include with each peptide
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assignment to a spectrum a score or set of scores that reflects
the likelihood that the given assignment is correct. Using Bayes’
Law and denoting correct and incorrect peptide assignments as
“+” and “-”, respectively, the probability that a particular peptide
assignment with database search scores, x1, x2, ..., xS, is correct,
p(+|x1, x2, ..., xS), can be computed as

where p(x1, x2, ..., xS|+) and p(x1, x2, ..., xS|-) are the probabilities
of scores x1, x2, ..., xS among correctly and incorrectly assigned
peptides, respectively, and p(+) and p(-) are prior probabilities
of a correct and incorrect peptide assignment, respectively. The
prior probabilities are the overall proportion of correct or incorrect
peptide assignments in the dataset. To compute probabilities using
eq 1, joint probability distributions for database search scores
among correct and incorrect peptide assignments must be derived
from training data with peptide assignments of known validity or
learned from the data itself. In either case, this becomes more
difficult as the number of database search scores, S, increases.

Discriminant function analysis can be used to combine together
any number of database search scores, x1, x2, ..., xS, into a single
discriminant score that best separates training data into two
groups by class, correct and incorrect peptide assignments.28 The
discriminant score, F, is a weighted combination of the database
search scores, computed according to the discriminant function

with constant c0 and weights ci derived in such a way that the
ratio of between-class variation to within-class variation is maxi-
mized under the assumption of multivariate normality. Deriving
the discriminant function requires training data with peptide
assignments of known validity. The resulting discriminant score
can be substituted into eq 1 in place of the original database search
scores to enable tractable calculation of probabilities that retain
as much discriminating power as possible using a single weighted
combination of the scores,

where p(+|F) is the probability that the peptide assignment with
discriminant score F is correct, and p(F|+) and p(F|-) are the
probabilities of F according to the discriminant score distributions
among correct and incorrect peptide assignments, respectively.

Discriminant function analysis was applied to SEQUEST
database search scores using the training dataset of search results
with known validity for spectra generated from a control sample
of 18 proteins. Spectra of poor quality, as determined by a score
reflecting several spectrum properties,29 were omitted during the

derivation of the discriminant functions. Such “data cleaning”
excluded 7070 spectra of [M + 2H]2+ ions and 6995 spectra of
[M + 3H]3+ ions, >99% of which were incorrectly assigned, and
led to functions with improved discrimination between correct and
incorrect peptide assignments to spectra, even when applied to
the entire “uncleaned” training dataset. Four SEQUEST scores
were found to contribute significantly to discrimination and were
included in the final discriminant function analysis: 1. cross-
correlation (Xcorr), a measure based on the number of peaks of
common mass between observed and expected spectra, and used
as a primary criterion for peptide assignments; 2. ∆Cn, the relative
difference between the first and second highest Xcorr score for
all peptides queried from the database; 3. SpRank, a measure of
how well the assigned peptide scored relative to those of similar
mass in the database, using a preliminary correlation metric; 4.
dM, the absolute value of the difference in mass between the
precursor ion of the spectrum and the assigned peptide. Separate
analyses were applied to spectra of [M + 2H]2+ and [M + 3H]3+

precursor ions, since they give rise to different Xcorr and ∆Cn

score distributions. Analysis of spectra of [M + H]+ precursor
ions was not pursued, given their poor representation in the
training dataset.

Transformations of some input scores significantly improved
the discrimination power of this approach. For example, increased
discrimination between correct and incorrect peptide assignments
was achieved by taking the natural log of Xcorr and SpRank, which
reduces the variance of those scores, prior to discriminant analysis.
A strong dependence of Xcorr on the length of assigned peptides
was observed (see Supporting Information). Xcorr reflects the
number of matches between ion fragments in the observed and
predicted spectra and thus tends to be larger for assignments of
long peptides, which have many fragment ions, than for assign-
ments of short peptides. As a result, assignments of short peptides
can be difficult to classify, since even correct assignments result
in relatively small Xcorr scores. Length dependence of Xcorr
scores was largely reduced by the transformation to Xcorr′,

where L is the length (number of amino acids) of the assigned
peptide, NL is the number of fragment ions expected for a peptide
of length L, and LC is a specified length threshold beyond which
Xcorr is independent of peptide length, corresponding to number
of fragment ions NC. Values of NL and LC likely depend on the
detectable mass range of the mass spectrometer. Nevertheless,
NL can be sufficiently approximated as 2L and 4L for the case of
[M + 2H]2+ and [M + 3H]3+ precursor ions, respectively, since
the major contributions to Xcorr are due to b and y ions. LC was
set at the peptide length beyond which Xcorr was found to be
largely length-independent (15 and 25 for the case of [M + 2H]2+

and [M + 3H]3+ precursor ions, respectively). The transformation
of Xcorr to Xcorr′ improved discrimination between correct and
incorrect peptide assignments. It is interesting to note that a

(28) Tabachnick, B. G.; Fidell, L. S. Using Multivariate Statistics, 4th ed.; Allyn
and Bacon: Needham Heights, MA, 2001. (29) Nesvizhskii, A. I. Manuscript in preparation.

p(+|x1, x2, ..., xS) )

p(x1, x2, ..., xS|+)p(+)
p(x1, x2, ..., xS|+)p(+) + p(x1, x2, ..., xS|-)p(-)

(1)

F(x1, x2, ..., xS) ) c0 + ∑
i)1

S

cixi (2)

p(+|F) )
p(F|+)p(+)

p(F|+)p(+) + p(F|-)p(-)
(3)

Xcorr' ) {ln(Xcorr)
ln(NL)

, if L < LC

ln(Xcorr)
ln(NC)

, if L gLC

(4)
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similar transformation of FASTA and Smith-Waterman sequence
similarity scores has been successfully employed to reduce their
sequence-length dependence.30

The discriminant functions derived from the training data for
spectra of [M + 2H]2+ and [M + 3H]3+ ions are listed in Table 1.
From the magnitude of correlations between variables and
discriminant score given by the loading matrix, it is evident that
the SEQUEST Xcorr and ∆Cn scores contribute to most of the
discrimination achieved between correctly and incorrectly as-
signed peptides. With the two scores, excellent linear separation
between classes and normality was observed, thus validating the
use of linear discriminant analysis for distinguishing correct and
incorrect peptide assignments (see Supporting Information).
Results with the training dataset support the effectiveness of the
discriminant score. For example, among spectra of [M + 2H]2+

precursor ion charge, 84% of correct peptide assignments had
discriminant scores of 1.7 or greater, whereas 99% of incorrect
peptide assignments had scores below that threshold.

Calculation of probabilities that peptide assignments are correct
using eq 3 requires accurate models of discriminant score
distributions. The observed discriminant score positive (correct
peptide assignments) and negative (incorrect peptide assign-
ments) distributions for spectra of [M + 2H]2+ and [M + 3H]3+

precursor ions in the training dataset are shown in Figure 1A and
B, respectively. These distributions were obtained by placing
spectra in bins of width 0.2 according to discriminant score, and
counting the resulting total number in each bin. Several param-
etrized distributions were assessed for their fit to these distribu-
tions. A Gaussian distribution offers a close approximation to the
observed discriminant score distributions among correct peptide
assignments (Figure 1). Hence, the probability that a correct
peptide assignment has discriminant score F can be computed
according to a Gaussian distribution with calculated mean µ and
standard deviation σ.

In contrast, the discriminant score negative distributions were
noticeably asymmetric, having an extended right tail, and were

satisfactorily modeled by a gamma distribution (Figure 1). The
probability of a discriminant score F for an incorrect peptide
assignment can thus be computed as

with parameter γ set below the minimum F value in the dataset,
and parameters R and â computed using the method of mo-
ments.31 Substituting the expressions for p(F|+) and p(F|-), along
with the computed prior probabilities, into eq 3 should enable
the calculation of accurate probabilities that peptides assigned to
spectra in the training dataset are correct.

Computing Probabilities with NTT Distributions. When the
enzyme trypsin is used to break proteins into small fragments
amenable to MS/MS, database search of spectra can be performed
in a constrained manner against only those peptides predicted to

(30) Pearson, W. R. Protein Sci. 1995, 4, 1145-1160.
(31) Johnson, N. L.; Kotz, S. Continuous Univariate Distributions. John Wiley &

Sons: New York, 1994.

Table 1. Discriminant Functions Derived from Training
Dataset Spectra of [M + 2H]2+ and [M + 3H]3+

Precursor Ionsa

[M + 2H]2+ [M + 3H]3+

variable coefficient correlation coefficient correlation

Xcorr′ 8.362 0.798 9.933 0.698
∆Cn 7.386 0.746 11.149 0.806
ln SpRank -0.194 -0.510 -0.201 -0.491
dM -0.314 -0.306 -0.277 -0.251
constant -0.959 -1.460

a The coefficients weighting each variable are indicated, as well as
the correlation between each variable and the discriminant function
given by the loading matrix, indicative of the contribution of each
variable to discrimination. Contributions can range from none (cor-
relation of 0) to complete (correlation of (1).

Figure 1. Training data discriminant score distributions. Discriminant
score positive (correct peptide assignments) and negative (incorrect
peptide assignments) disbributions for spectra of (A) [M + 2H]2+ and
(B) [M + 3H]3+ precursor ions in the training dataset (solid line). Also
shown are Gaussian and gamma distributions for the correct and
incorrect peptide assignments, respectively, computed by the method
of moments (dashed line).

p(F|-) )
(F - γ)R-1e-(F - γ)/â

âRΓ(R)
(6)

p(F|+) ) 1
x2πσ

e-(F - µ)2/2σ2
(5)
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be products of trypsin digestion. This has the advantage of saving
computation time by reducing the search space. Alternatively,
database search can be performed in an unconstrained manner
against all peptides in the database. This has the advantage of
potentially identifying peptides that result from nontryptic cleav-
age, for example, by protease contaminants in the sample or from
nonenzymatic cleavage during ionization for ESI-MS/MS.

In the case of unconstrained database searches, such as the
SEQUEST searches used in this study, the number of tryptic
termini (NTT) of peptides assigned to spectra is valuable informa-
tion for assessing whether the assignments are correct and has
often been used as partial criteria for accepting peptide assign-
ments.3-4,22 This number, which can be 0, 1, or 2, measures how
many of the peptide termini, on the basis of amino acid sequence,
are consistent with cleavage by trypsin. The NTT distributions
(the relative numbers of peptides with 0, 1, or 2 tryptic termini)
among correct and incorrect peptide assignments are sufficiently
distinct to be of use for computing the probability that a peptide
assignment is correct. Whereas the NTT distributions for incorrect
peptide assignments are expected to be predominantly NTT ) 0,
reflecting the frequencies of amino acids recognized by trypsin
(lysine and arginine) in the database used for search, those for
correct peptide assignments are expected to be predominantly
NTT ) 2. In the training dataset, for example, of the incorrectly
assigned peptides, 80% had NTT ) 0, 19% had NTT ) 1, and 1%
had NTT ) 2, whereas of the correctly assigned peptides, 3% had
NTT ) 0, 23% had NTT ) 1, and 74% had NTT ) 2. Taking into
account NTT information in addition to the discriminant score
when computing probabilities should result in improved discrimi-
nation between correct and incorrect results of unconstrained
database searches. That is because even if two peptide assign-
ments, one with NTT ) 0 and the other with NTT ) 2, have the
same discriminant score, the latter is more likely to be correct
since peptides with NTT ) 2 are highly enriched among correct
assignments.

Combining together information regarding NTT as well as
discriminant score for a spectrum, the probability that a peptide
assignment is correct, p(+|F, NTT), can be expressed using
Bayes’ Law,

where p(F, NTT|+) and p(F, NTT|-) are the probabilities of F
and NTT according to the positive and negative joint probability
distributions, respectively. One expects the discriminant score and
NTT distributions to be independent of one another, both for
correct and incorrect peptide assignments, as long as the database
search scores are not strongly dependent on the number of tryptic
termini of peptides. This is true in the case of SEQUEST.
Normalized discriminant score distributions are plotted in Figure
2 for correct and incorrect peptide assignments to spectra of [M
+ 2H]2+ precursor ions in the training dataset, showing each
separately for cases in which the assigned peptide has 0, 1, or 2
tryptic termini. It is evident that the discriminant score distribu-
tions are very similar for all values of NTT, verifying that the
discriminant score and NTT distributions can be considered

independent among correct and incorrect peptide assignments.
Incorporating this independence assumption into eq 7 yields the
simplified expression for computing the probability that a peptide
assignment with discriminant score F and number of tryptic
termini NTT is correct,

where p(NTT|+) and p(NTT|-) are the probabilities of NTT
according to the distributions among correct and incorrect peptide
assignments, respectively. If the database search is constrained
to consider only fully tryptic peptides, then all assigned peptides
will have NTT ) 2, effectively reducing eq 8 to eq 3. The strategy
outlined in this section for incorporating NTT information into
computed probabilities should be generalizable to the use of
enzymes other than trypsin, as well.

Mixture Model Distributions of Correct and Incorrect
Peptide Assignments. Although the training data prior prob-
abilities and discriminant score and NTT distributions of correct
and incorrect peptide assignments could be used as a “global
model” to compute probabilities that any test spectrum assignment
is correct according to eq 8, such a model would not likely be
robust enough to produce accurate probabilities for a wide variety
of datasets. That is in part because the discriminant score
distributions can vary significantly from dataset to dataset. For
example, in the case of SEQUEST, Xcorr, one of the primary
contributors to the discriminant score, is strongly affected by the
levels of signal to noise in the spectra. Less than accurate
computed probabilities would also result from variations in the
NTT distributions of correctly assigned peptides, which are
sensitive to the efficiency of sample trypsinization and the presence
of protease contaminants in the sample. In addition, the NTT
distributions of incorrectly assigned peptides, though more
predictable, can nonetheless vary depending on the frequency of

p(+|F, NTT) )
p(F, NTT|+)p(+)

p(F, NTT|+)p(+) + p(F, NTT|-)p(-)
(7)

Figure 2. Independence of distributions of discriminant score and
number of tryptic termini (NTT) among correct and incorrect peptide
assignments. Normalized discriminant score positive (correct peptide
assignments) and negative (incorrect peptide assignments) distribu-
tions for training data spectra of [M + 2H]2+ precursor ions are shown
separately for NTT values of 0, 1, and 2.

p(+|F,NTT) )
p(F|+)p(NTT|+)p(+)

p(F|+)p(NTT|+)p(+) + p(F|-)p(NTT|-)p(-)
(8)
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the amino acids recognized by trypsin (e.g. lysine and arginine)
in the particular database used for search. Finally, a global model
will not adequately reflect the expected variations in prior
probabilities (the relative numbers of correctly and incorrectly
assigned spectra) from dataset to dataset because of several
factors, such as sample purity and spectral quality.

A robust alternative to using a global model based upon
distributions derived from the training data is to derive the prior
probabilities and discriminant score and NTT distributions among
correct and incorrect peptide assignments empirically from each
dataset as a mixture model using the expectation maximization
(EM) algorithm.32 In the mixture model, each spectrum contrib-
utes to distributions of both correct and incorrect peptide
assignments in proportion to its computed probability of being
correctly and incorrectly assigned, respectively. It is the task of
the EM algorithm to learn the likelihood that each peptide
assignment in the dataset is correct vs incorrect. At the outset,
the EM algorithm makes initial estimates of the prior probabilities
and discriminant score and NTT distributions among correct and
incorrect peptide assignments. It then finds distributions that best
fit the observed data by a two-step iterative process. In the first
step, probabilities that spectra are correctly assigned, p(+|F,
NTT), are calculated according to eq 8 using current estimates
of the distributions. In the second step, the prior probabilities and
discriminant score and NTT distributions among correct peptide
assignments are computed using all spectra in the dataset, each
weighted by the current estimate that it is correctly assigned,
p(+|F, NTT). Similarly, the distributions among incorrect peptide
assignments are computed, also using all spectra in the dataset,
but in this case, each is weighted by the current estimate that it
is incorrectly assigned, (1 - p(+|F, NTT)).

For example, during the second step of the EM algorithm, the
prior probability of a correct peptide assignment in a dataset of N
spectra is computed as

where Fi and NTTi are the discriminant score and NTT value,
respectively, for the peptide assignment to spectrum i. The
discriminant score positive distribution is modeled as a Gaussian
distribution, and the probability of a particular discriminant score,
F, among correct peptide assignments is therefore given by eq 5
with mean µ and standard deviation σ, computed from all spectra
as

Finally, the probability that a correct peptide assignment has a
particular number of tryptic termini, p(NTT|+), is computed as

the proportion of p(+) contributed by all spectra j assigned
peptides with that value of NTT.

The discriminant score and NTT distributions among incorrect
peptide assignments are computed in an analogous manner,
modeling the discriminant score negative distribution as a gamma
distribution according to eq 6.

The EM algorithm two-step process of computing p(+|F, NTT)
for spectra using current estimates of the prior probabilities and
discriminant score and NTT distributions and computing the prior
probabilities and discriminant score and NTT distributions using
current estimates of p(+|F, NTT) is repeated until no significant
changes in the distributions result. With each iteration, the
mixture model distributions more closely match the observed data
(see Supporting Information for an illustration of the EM algorithm
applied to the training data). Upon termination of the algorithm,
final probabilities that peptides assigned to spectra are correct
are computed according to eq 8 using the learned distribu-
tions.

The EM algorithm is not guaranteed to find the most likely
distributions of correct and incorrect peptide assignments in a
dataset, so several constraints are imposed in order to guide the
derivation of accurate distributions. For example, the discriminant
score distribution for correct peptide assignments is initialized
with that computed from the training data, which is expected to
be similar, although not identical, to that of most datasets analyzed.
The discriminant score distribution for incorrect peptide assign-
ments in the mixture model is initialized with the distribution
derived from data with NTT ) 0, since the majority of such cases
are expected to be incorrect peptide assignments. The γ parameter
value of the distribution is fixed during all subsequent rounds of
the EM algorithm. In addition, the mixture model probabilities
of all spectra with discriminant scores smaller than the initial
discriminant score negative distribution mean are fixed at 0 to
enforce that they be considered incorrectly assigned.

Combined Probabilities for [M + 2H]2+ and [M + 3H]3+

Precursor Ions. In the analysis thus far described, independent
models are employed to estimate the probability that a peptide is
assigned correctly to a spectrum of either an [M + 2H]2+ or [M
+ 3H]3+ precursor ion. This is justified when the precursor ion
charge is known. In the case of high-resolution mass spectrometry,
such as quadropole time-of-flight, the charge of the precursor ion
can be determined by deconvoluting the isotopic pattern. In the
case of low-resolution mass spectrometry, the precursor ion
charge is generally not known, but it can in some cases be
determined by computational methods.33,34 In addition, database
search applications can query each spectrum against a database
separately for both [M + 2H]2+ and [M + 3H]3+ precursor ion
cases and report only one peptide assignment per spectrum
corresponding to the (putatively correct) charge state yielding the
higher final score.

(32) Dempster, A.; Laird, N.; Revow, M. J. R. Stat. Soc. 1977, B39 (1), 1-38.

(33) Sadygov, R. G.; Eng, J.; Durr, E.; Saraf, A.; et al. J. Proteome Res. 2002, 1
(3), 211-215.

(34) Perez, R. E.; Asara, J. M.; Lane, W. L. Proceedings of the 50th ASMS
Conference on Mass Spectrometry and Allied Topics, Orlando, FL, 2002; in
press.
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When the precursor ion charge of a spectrum is not known
and database search results for both the [M + 2H]2+ and [M +
3H]3+ ion cases are reported, there must be a suitable means to
reconcile the peptide assignments for each ion case. For example,
the ion trap spectra of this study were searched by SEQUEST
and assigned peptides for both [M + 2H]2+ and [M + 3H]3+ ion
cases, yet each spectrum can realistically have a correct peptide
assignment for at most one precursor ion case. Using the mixture
models for [M + 2H]2+ and [M + 3H]3+ precursor ions described
above, probabilities are computed that the peptide assignments
are correct for each case independently, with no constraints that,
for example, prevent probabilities of 1 being computed for peptide
assignments to both precursor ion cases of the same spectrum.

As a means of combining together the results of both [M +
2H]2+ and [M + 3H]3+ precursor ion models in a realistic way in
cases in which the ion charge is not known, probabilities computed
by each model to the same spectrum are adjusted downward by
the multiplicative factor, (p2+ + p3+ - p2+p3+)/(p2+ + p3+), where
p2+ and p3+ are the independently computed probabilities that
peptide assignments to a spectrum are correct for the [M + 2H]2+

and [M + 3H]3+ ion cases, respectively. This adjustment to the
probabilities should have minimal effect on the great majority of
spectra for which p2+p3+ is small. It effectively removes the
unrealistic joint probability (assuming independence) that peptides

assigned to a spectrum are correct for both [M + 2H]2+ and [M
+ 3H]3+ ion cases simultaneously. For example, in the case in
which both p2+ and p3+ are initially 1 for a particular spectrum,
they are each reduced to 0.5. This adjustment ensures in general
that probabilities that peptide assignments are correct for both
precursor ion cases of the same spectrum do not sum to more
than unity.

Test Data Mixture Model Probabilities. The mixture model
EM method was applied to a test dataset of combined MS/MS
spectra generated from 22 different LC/MS/MS runs on a control
sample of 18 proteins. These spectra were searched using
SEQUEST against the human peptide database appended with
sequences of the control proteins. This test dataset, similar to the
training dataset described above, has SEQUEST peptide assign-
ments with known validity and can be used to evaluate the mixture
model method for computing probabilities that spectra are
assigned correctly. Convergence of the EM algorithm was
achieved within 10 iterations. Figure 3A,B shows the discriminant
score positive and negative distributions derived by the mixture
model EM method for spectra of [M + 2H]2+ and [M + 3H]3+

precursor ions, respectively. It is evident that they closely match
the actual positive and negative distributions of the test dataset.
Close correlation between actual and model-derived prior prob-
abilities and NTT distributions was also observed.

Figure 3. Test data discriminant score distributions and probabilities. Actual (solid line) and mixture model derived (dashed line) discriminant
score positive (correct peptide assignments) and negative (incorrect peptide assignments) distributions for test data spectra of (A) [M + 2H]2+

and (B) [M + 3H]3+ precursor ions. Actual probability (fraction of database search results that are correct) (solid line) and computed probability
(dashed line) plotted separately for peptide assignments with the number of tryptic termini (NTT) equal to 0, 1, or 2 for spectra of (C) [M + 2H]2+

and (D) [M + 3H]3+ precursor ions.
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Probabilities that peptide assignments are correct were com-
puted according to eq 8 using the positive and negative distribu-
tions estimated by the mixture model. Figure 3C,D shows for
spectra of [M + 2H]2+ and [M + 3H]3+ ions, respectively, the
computed probability and actual probability (fraction of database
search results that are correct) plotted as a function of discriminant
score separately for peptide assignments with NTT equal to 0, 1,
or 2. Good agreement is evident for all values of NTT, justifying
the assumption used to compute probabilities that for correct
and incorrect peptide assignments, the discriminant scores and
NTT are independent. As expected, assignments of peptides
with NTT ) 2 had much higher probabilities for any discrimi-
nant score relative to assignments of peptides with NTT ) 0
or 1, reflecting the much higher proportion of peptides with NTT
) 2 among correct assignments than among incorrect assign-
ments.

The accuracy of computed probabilities is further demonstrated
by plotting the actual probability that peptide assignments are
correct as a function of computed probability for the combined
test data spectra of [M + 2H]2+ and [M + 3H]3+ ions (Figure 4).
Spectra were sorted by computed probability, and then the mean
computed probability and actual probability were determined
within a sliding window of 100 spectra. Good correspondence
between computed and actual probabilities over most of the entire
0-1 range is evident, indicating that the computed probabilities
are an accurate reflection of the likelihood that peptides are
correctly assigned to spectra. This validates the mixture model
EM method, and suggests that computed probabilities that
peptides are correctly assigned to MS/MS spectra could be used
effectively in a statistical model to estimate the likelihood that
proteins corresponding to those peptides are present in the
sample.

To evaluate the mixture model EM analysis method on smaller
datasets, it was applied to database search results for each of the
22 test data LC/MS/MS runs separately to derive 22 different
mixture models. LC/MS/MS runs typically produce only 1000-

2000 spectra. Computed probabilities from the individual models
were then combined and sorted to enable calculation of a mean
computed probability and actual probability within a sliding
window of 100 spectra, as previously described. Figure 4 shows
that probabilities computed for individual LC/MS/MS runs are
nearly as accurate as those computed from a single model of the
combined data. Interestingly, even more accurate computed
probabilities were obtained by removing poor quality spectra from
the datasets prior to analysis.29 Such data cleaning resulted in
discriminant score negative distributions that were more faithfully
modeled by a gamma distribution. These results demonstrate that
the mixture model is generally applicable to database search
results for small numbers of spectra obtained from individual LC/
MS/MS runs.

Sensitivity and Error Rates with Minimum Computed
Probability Thresholds. A useful statistical model, in addition
to yielding accurate probabilities, should enable good discrimina-
tion between correct and incorrect database search results. An
ideal model would enable complete separation between correct
and incorrect peptide assignments, the former assigned prob-
abilities close to unity, the latter, close to 0. In practice, one can
accept all peptide assignments having a computed probability
greater than or equal to a user-specified minimum threshold. A
relatively low minimum threshold can be used to ensure high
sensitivity (fraction of all correct peptide assignments accepted),
yet often with the cost of a higher false identification error rate
(fraction of accepted peptide assignments that are incorrect).
Alternatively, a relatively high minimum threshold can be used
to achieve a lower error rate at the expense of decreased
sensitivity. The optimal tradeoff between sensitivity and error
will depend on the relative importance given to each by the
user.

The sensitivity/error rate tradeoff for the combined test dataset
is illustrated in Figure 5A. Each point along the curve represents
the results of using a different minimum probability threshold to
accept all peptide assignments with computed probabilities at least
as great. The bottom right corner (denoted with an asterisk)
corresponds to an ideal data filter with 100% sensitivity and 0%
error. For comparison, the plot also shows the results of using
several conventional means of filtering data based upon SEQUEST
scores and NTT. It is evident that data filters based on the
probabilities computed from the model outperform each conven-
tional filter, achieving much higher sensitivity and, hence, a
greater number of correct identifications, for the same rate of
error. For example, employing a conservative set of SEQUEST
score and NTT thresholds (no. 5 in Figure 5A: Xcorr g 2, ∆Cn g

0.1, SpRank e 50, NTT ) 2) yields 61% sensitivity with an error
of 2.5%, whereas employing a minimum probability threshold (p
g 0.65) yields 89% sensitivity with the same level of error. Filtering
data based upon computed probabilities in this case therefore
confers 46% more correct peptide identifications than filtering data
based upon SEQUEST scores and NTT.

To take advantage of good discrimination between correct and
incorrect peptide assignments, a user must choose an appropriate
minimum probability threshold to employ for a particular dataset.
Accurate probabilities generated by the mixture model enable the
expected sensitivity, 〈Sens〉, and expected false identification error

Figure 4. Accuracy of computed probabilities. The actual probability
(fraction of peptide assignments that are correct) among spectra with
indicated computed probabilities, determined either from a single
mixture model using all 22 test data LC/MS/MS runs (solid line), or
from 22 mixture models, each derived from an individual LC/MS/MS
run (dashed line). The expected probability is also shown (dotted 45°
line).
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rate, 〈Err〉, for any minimum probability threshold value, pT, to
be calculated,

where pi is the probablity that the peptide assigned to spectrum
i is correct, and the indicated sums are either over all spectra i,
or over only those spectra with pi g pT. The sensitivity and error

rates predicted by the model for the test dataset agree well with
those observed (Figure 5B) and can be used to select the
minimum probability threshold that achieves the optimal tradeoff
between the two or a specified false identification error rate. The
use of such a threshold greatly facilitates high-throughput analysis
of peptide identifications made by MS/MS and database search.

Future Work. The discriminant functions used throughout
this work were derived using spectra produced on a single ESI
ion trap mass spectrometer from a control sample of known
protein components. It is possible that these functions may not
be optimal for data produced from all other types of mass
spectrometers (e.g., ESI-qTOF, MALDI-qTOF). One solution is
to derive new discriminant functions specifically optimized for use
with each different spectrometer type. This could be achieved
using search results for spectra generated from a control sample
of known components, as described in this work. Alternatively, it
may be possible to learn an optimal discriminant function from
conventional data by initially applying the mixture model EM
method with the suboptimal discriminant score and then using
the resulting estimated probabilities that peptide assignments are
correct to weight the data in a derivation of a new discriminant
function that optimally separates the data on the basis of those
estimates. This procedure can be iterated until no significant
change in the discriminant function results. We are currently
exploring the feasibility of such an approach.

As described above, the mixture model discriminant score
negative distribution is initialized using data with NTT ) 0, which
are predominantly incorrect. This is not possible for results of a
database search with constraints on the minimum number of
tryptic termini of assigned peptides. As an alternative means of
guiding the derivation of the discriminant function negative
distribution when data with NTT ) 0 are not present, a set of
“known incorrect peptide assignments” of equal number to the
data, can be included in the mixture model during iterations of
the EM algorithm. These incorrect assignments can be obtained,
for example, by searching the dataset with SEQUEST using a
database in which all protein sequences in the original database
have been reversed. Such a database preserves the tryptic peptide
length distribution of the original, yet ensures that all peptide
assignments resulting from its use are incorrect (provided that
all those present by chance in the original database are removed).
Preliminary results using this strategy are encouraging.

The mixture model EM method is currently being extended
to analyze peptide assignments to spectra of [M + H]+ precursor
ions. It can also be adapted to utilize additional information when
available, such as the number of missed tryptic cleavages35 and
the expected pI of the peptide,36 or in the case of experiments
employing various chemical labels such as the ICAT reagent, the
presence or absence of labeled amino acids in the assigned peptide
or additional features of the spectrum related to that label. In
addition, this approach is not specific to SEQUEST, but can in
principle be applied to the results of any spectrum database search
analysis.

Computed probabilities that peptides are correctly assigned
to MS/MS spectra can be used to estimate the likelihood for the

(35) Parker, K. C. J. Am. Soc. Mass Spectrom. 2002, 13, 22-39.
(36) Zuo, X.; Speicher, D. W. Proteomics 2002, 2, 58-68.

Figure 5. Sensitivity and false identification error rates using
minimum computed probability thresholds. (A) Sensitivity/error rate
tradeoff employing thresholds based upon computed mixture model
probabilities (solid line). Also shown are results of using conventional
filtering criteria based upon SEQUEST scores and the number of
tryptic termini (NTT) of assigned peptides: (1) ref 4; (2) Xcorr [M +
2H]2+ ions g 2, Xcorr [M + 3H]3+ ions g 2.5, ∆Cn g 0.1, SpRank e

50, NTT g 1; (3) Xcorr g 2, ∆Cn g 0.1, SpRank e 50, NTT g 1; (4)
Xcorr [M + 2H]2+ ions g 2, Xcorr [M + 3H]3+ ions g 2.5, ∆Cn g 0.1,
SpRank e 50, NTT ) 2; (5) Xcorr g 2, ∆Cn g 0.1, SpRank e 50,
NTT ) 2. The result of using an ideal data filter conferring 100%
sensitivity and 0% error is indicated by an asterisk in the lower right
corner. (B) Observed (solid line) and model-predicted (dashed line)
sensitivity and error rate as a function of minimum computed
probability threshold.
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presence of proteins corresponding to those peptides in a sample.37

Interestingly, correct peptide assignments, more than incorrect
ones, tend to correspond to “multihit” proteins, those to which
other correctly assigned peptides correspond. This trend is
particularly pronounced for large datasets or samples of low
complexity and can be exploited by adjusting the probabilities of
assigned peptides to reflect whether their corresponding proteins
are “multihit” in the dataset.

CONCLUSIONS
The statistical model described in this work enables high

throughput analysis of MS/MS database search results and can
serve as a useful standard by which the results of different
research groups, using different mass spectrometers, and even
different database search software, can be compared. It requires
minimal user interaction and adds little execution time in addition
to the database search. It eliminates the need to manually analyze
database search results to assess whether they are correct. The
probabilities computed by this analysis can instead be used
effectively to identify correct peptide assignments and filter data
with predictable false identification error rates. They also serve
as useful inputs for estimating the likelihood of the presence of
corresponding proteins in the sample.

Currently, the software implementing the mixture model EM
analysis consists of a series of stand-alone Perl scripts that are
run on Linux. It is available to the public as open source at http://

www.systemsbiology.org/research/software.html. A Windows
version of the software is also planned. Although the current
version employs a discriminant function suitable for SEQUEST
search results, its modular nature facilitates substituting alternative
discriminant functions produced for scores of other database
search tools, or simply single scores of such tools, to enable
statistical analysis of a wide variety of database search applications.
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